Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Añadir filtros

Base de datos
Tipo del documento
Intervalo de año
1.
Actuators ; 12(5), 2023.
Artículo en Inglés | Web of Science | ID: covidwho-20244915

RESUMEN

Eliminating pathogen exposure is an important approach to control outbreaks of epidemics such as COVID-19 (coronavirus disease 2019). To deal with pathogenic environments, using disinfection robots is a practicable choice. This research formulates a 3D (three-dimensional) spatial disinfection strategy for a disinfection robot. First, a disinfection robot is designed with an extensible control framework for the integration of additional functions. The robot has eight degrees of freedom that can handle disinfection tasks in complex 3D environments where normal disinfection robots lack the capability to ensure complete disinfection. An ingenious clamping mechanism is designed to increase flexibility and adaptability. Secondly, a new coverage path planning algorithm targeted at the spraying area is used. This algorithm aims to achieve an optimal path via the rotating calipers algorithm after transformation between a 2D (two-dimensional) array and 3D space. Finally, the performance of the designed robot is tested through a series of simulations and experiments in various spaces that humans usually live in. The results demonstrate that the robot can effectively perform disinfection tasks both in computer simulation and in reality.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA